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ABSTRACT

CONTENTS

FORECASTING WITH PLANT PROCESS MODELS: AN INTRODUCTION TO A
TINE SERIES APPROACH, by Keith N. Crank, Statistical Research
Division, Statistical Reporting Service, U, S, Department of
Agriculture. Staff Report No. AGES840827

This paper presents a method of using data from a plant pro-
cess model and nonlinear regression techniques to forecast end
of season values for various plant components. The use of
time series methods are also discussed. Five models are
presented with a theoretical justification.
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SUMMARY

This paper presents an approach and develops the statistical
background for using plant process models (PPM’'s) as a com
ponent in yield forecasting models. Although there are other
problems which must be solved before PPM's can be used in an
operational program, the problem of how to use a PPM to fore-
cast is an important one.

The method suggested in this paper uses the early season data
from a plant process model to fit the nonlinear logistic
model, the Gompertz model or their time series representa-—
tions. One of the parameter estimates from each model will
then provide the forecast of plant component values at the end
of the growing season, These can then be used to obtain a
forecast of yield. Analysis and summary results will be
presented in a later paper.
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INTRODUCTION

The purpose of this paper is to introduce a method of combin-
ing nonlinear regression techniques with data from a plant
process model(PPM) to forecast plant yield components. The
models obtained can be used to forecast yield directly if suf-
ficient data is available at the time of the forecast. How-
ever, this will often not be the case. When yield data is not
available, final values can be forecast for other plant com
ponents, which can in turn be used for forecasting yield. For
the purposes of this paper, though, it will be assumed that
the fruit weight of the plant is the compomnent being forecast.
Motivation and development of these models are given in this
paper. Analysis and results of this method will be presented
in a later paper.

The Statistical Reporting Service forecasts crop yields using
regression parameters based on data collected in previous -
years. Currently data from three or five years is nused to
estimate the parameters, This means that the forecast for the
current year is extremely dependent on the weather patterns of
those previous years. If more years of data were used to
estimate the parameters, it is possible that the year to year
differences in weather could be incorporated into the regres—
sion parameters. Unfortunately, technological changes in crop
production could invalidate regression estimates which use
many years of data unless these technological changes were
also modeled.

An alternative to using so many years of complex data is to
develop a model which only uses data from the current year.
One such model is the logistic growth function. This function
has the form

WEIGHT(t) = —2
1+fp

Previous research has dealt with fitting this model to field
data using the Marquardt mnonlinear regression technique.

([21,03},04),051,06]1,071,18),19],[10],[13])
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Although much research went into this model, it has mnot been
used in the operating program. Two major statistical reasons
contributed to this. The first reason is the problem of
unequal residual variances (heteroscedasticity). In the
theory of least squares an assumption is made that the error




terms of the predicted values have a constant variance. In
linear regression the parameter oestimates remain unbiased even
if this assumption is not valid. However, the estimates are
not necessarily minimum variance estimates (that is, there may
be better estimates in this case [11, pp. 144-1461). In non-
linear regression the effect of unequal residual variances is
not as clear. Since there is no exact solution for the param—
eters of a mnonlinear regression, it is not possible to
directly evaluate the effect of unequal variances, Research
was conducted on methods of reducing or eliminating this
unequal variance problem. However, little effort was spent in
determining whether or not it was a significant problem.

The second reason for not using the logistic growth model in
the operating program is the problem of convergence. In
linear regression convergence is not a problem, since there is
a closed form solution for the oparameter estimates which
requires merely that two data points be provided. For the
logistic growth model it is mnot clear how many points are
needed to guarantee that exactly one model can be fit through
that set of points, In some cases three points may be suffi-
cient to identify a unique logistic model. However, in other
cases, three points may determine many logistic models or pos-
sibly none.

Most of the papers dealing with the logistic growth model con-
sidered the problem of convergence. However, this considera-
tion was usually limited to determining whether or not conver-
gence occurred in time to make early season forecasts., Omnly
one paper ([6]1) tried to impose conditions which would make
the model converge. This was done by forcing the derivative
to change sign at a prespecified point. The effect was to
eliminate the oparameter which was hardest to estimate. This
approach seemed to be an improvement but no further research
was done.

As work on the logistic model decreased, research in the study
of plant process models (PPM's) expanded. Plant process
models are complex models from which computer programs can be
written which "grow” a plant in a computer., These models
require initial values for such items as variety characteris—
tics, planting date, soil characteristics, and soil water, as
well as daily values for precipitation, maximum and minimum
temperature, and solar radiation. Outputs from the programs
are daily values describing the size of the plant’s component
parts and its stage of growth. In addition, the final size of
each of the components, as well as the yield, is available at
the end of the season.

The purpose of this paper is to present an approach to wusing
PPM’'s for forecasting. The idea behind the paper is that
since data is available daily from a PPM, this data may be
useful in fitting a nonlinear growth model. The next section
examines some possible reasons for the statistical problems



THEORY

stated previously. Then the following section describes other

_models and explain how these models may help to eliminate or

reduce those problems. The final section describes the
analysis which is to be performed and which will appear in a
later paper.

In applying growth models it is assumed that each plant grows
according to a unique true model with certain estimable param-
eters. However, in sampling to estimate the model parameters
more than one plant was sampled on each time visit and des-
tructive measurements were used. Therefore, the parameters
estimated were for the model of an average of plants, not an
individual plant. What is desired, though, is an average of
the model estimates for each individual plant., In a linear
regression this is not a problem since the average of two
lines is the lime through the average of the points. However,
for a nonlinear model this is not the case. For nonlinear
models the average for a given functional form does not have
the same functional form. In previous research the measure—
ments obtained to fit the logistic model were of necessity
destructive measurements. Therefore, each of the data points
used to fit the model came from a different plant, and each of
the points represented one of many models. However, only one
model was estimated.

Both of the statistical problems encountered in previous
resear¢ch can be attributed in part to the way the model param-
eters were estimated. Since each of the points used in esti-
mation may represent a different set of model parameters, it
is not surprising that an average model fit to all of the
points did not always converge. Furthermore, it is easy to
see from figure 1 that heteroscedasticity is to be expected.
Since all of the model functions start out near zero, there
cannot be much difference in their early values. However, the
later values can vary widely.

If it were possible to obtain data from a single plant without
affecting the growth of the plant and use that data to fit the
model, convergence might be obtained at an earlier date. How-
ever, it 1is not clear whether even this convergence would be
early enough to provide early season forecasts. That problem
will be discussed in & later paper after the analysis has been
completed.

It also seems clear that the problem of unequal residunal vari-
ances could be reduced by using data from a single plant.
However, there may be an inherent problem with unequal resi-
dual variances in the model. It seems logical for the plant
to be able to deviate more from its expected value when it is
large than when it is small, Since the growth function is
nonnegative and increasing, these 1larger deviations would
occur later in plant development. Thus there may be a problem
with unequal residual variances even when a single plant is
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FIGURE 1: EXAMPLES OF THE LOGISTIC GROWTH FUNCTION



MODEL

used. This problem should not be as large as in previous
research, since between plant variability has been eliminated.

Fitting a growth model using data from a single plant could

- provide many benefits. But it has its drawbacks as well. The

biggest problem is with autocorrelation of the residuals.
This means that deviations of the true value from the model
value will be related for time periods which are close
together, For example, if a plant’s size is below what is
expected on a given day, the size on the following day will
likely be below its expected value also. In order to reach
its expected value on the second day, the plant must not only
make up the previous day's deficit, but must also account for
its expected growth for that day. Thus the errors will not be
uncorrelated. If the errors are not uncorrelated, then the
parameter estimates may not be consistent (that is, no matter
how much data is available the estimates may mnot converge to
their true value [12]).

It would be nice if instead of comparing the plant’s size to
some fixed value, it could be compared in some way to its pre-
vious day'’s value. If the plant’s expected growth for a given
day were dependent on its size at the beginning of the day,
then a model based on the size of the plant on the previous
day would have uncorrelated errors. Such a model would be a
time series model. In a time series model each value of plant
size can depend on the previous day’s value. However, such a
model would not necessarily be linear. Thus the techniques
developed in most time series courses may not be directly
applicable.

The discussion of using data from a single plant assumed that
such data could be obtained without influencing the future
growth of the plant., In general such data is mnot available.
In order to obtein measurements on a growing plant it is usu-
ally necessary to destroy the plant or at least parts of .the
plant., However, by assuming that the plant process models can
reproduce the growth of a representative plant, data can be
obtained for what can be considered to be a single plant. In
addition this data can be obtained without affecting the
future growth of the plant.

Since plant process models (PPM’s) produce daily size values
for all plant componments, these PPM’s can be used in conjunc-
tion with within year growth models to forecast the values of
those components at the end of the season. This can be done
by fitting a nonlinear regression model to the daily plant
data. The model with which the agency has the most experience
is the logistic growth model. The form of this model is

w(t) = —2

1+pp*



where W is some measure of the weight of the fruit at time t,
t is time (usually measured as number of days from some
observable phenological event), and a, B, and p are parameters
to be estimated. (See Figure 2.)

Another model which is similar is the Gompertz model. This has
the form

t
w(t) = apf

where all of the variables are the same as in the 1logistic
model (though the parameters may have different interpreta-
tions). (See Figure 3.)

Both of these models can be rewritten as a time series, that
is, W(t) (weight at time t) is written as a function of W(t-1)
(the previous day’s weight) instead of as a function of t,
This is dome by first solving the equation for t. For the
logistic model we have the following steps:

w(t) = —2 o
1+Bp

Multiplying on both sides by 1+ppt we geot

(1+Bpt)'(t) = a,

Expanding the left hand side

() +(BpEIW(L) = a,

subtracting W(t)

(BptIW(t) = a-W(t),

dividing by PBW(t)

t _ aW(t)
P pw(t) ’

and then taking logs we get

- a-¥W(t)
t(iln(p)) = 1n pw(E) J°
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FIGURE 2:

LOGISTIC FUNCTION
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FIGURE 3:

GOMPERTZ FUNCTION



We then divide by 1la(p) to get

- 1 a-¥(t)
t ln(p)ln[B'(t)]'

Then we substitute (t-1) for t

qy = 1 a-W(t-1)
(t-1) ln(p)ln[ﬂ'(t—l) .

This is then substituted back into our original equation:

w(t) = “t
1+8p

1+Bp(1+_t-1)

= @

o =)

1+Bpp

e =l

(]

1+Bpe

(since p eln(p))

NG5 )

1+8pe

a
a-W(t-1)
1+Bp BW(t-l)]

a
1+ g(a—'ﬂt—l))]
¥(t-1)
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- a¥W(t-1)
¥(t-1)+pa-pW(t-1)

_aW(t-1)
(1-p)VW(t-1) +pa

(See Figure 4.)

The same procedure is used to derive a time series for the
Gompertz model:

t
w(t) = ap?
t
Bp - w(t)
a

ptln(B) = ln[!%fl]

ot = 1n%B)ln[ﬂ<f')']

t(1n(p)) = ln[ln](‘B)ln['—(-:-)-]]

t= e meeal]
Then

(t-1) = 1n%p)1"[1n%p)l"[' ta-l ]]

and

"
-]
h--)

b -]

w(t)

J
2
h--)

-]

©
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FIGURE &4:

LOGISTIC TIME SERIES
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[y =[]

= ae
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= Q6

I
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a

(See Figure 5.)

Since the theory of linear regression is much better developed
than the theory of nonlinear regression, it is often usefunl to
make a transformation which will result inm a 1linear model.
Many times this is not possible and in such cases the model is
called intrinsically nonlinear. When such a transformation is
possible, the equations are called intrinsically linear.([1])
Of the four models mentioned, the first three are all intrin-
sically nonlinear, However, the last one (the Gompertz time
series) is intrinsically linear. Taking logrithms of both
sides we obtain

1n(W(t)) =‘ln(a)+p(1n('(t—1))-ln(a))

12
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ANALYSIS FOR
SECOND PAPER

Letting L(t)=1n(W(t)), d=1n(a)-pin(a), and c=p, we get the
linear equation

L(t) = d+cL{(t-1).

Of tho parameters to be estimated, the parameter g is of spe—
cial importance (See the Appendix). This parameter is the
upper asymptote of the curve and the estimate of fruit weight
at the end of the growing season. Hence, if the model can be
fit to the data before the season is over, the estimated value
of a can be nused as a forecast of the final value of fruit
weight, This is true for both the logistic model and the Gom-
pertz model. In the nonlinear regressions, the parameter a is
ostimated directly. However, in the linear regression d=(1-
p)in(a) is the gstimated parameter. We can obtain an estimate
of a as a=exp(—:;). but if ¢ is close to one, this may not be
a good estimator. In addition this estimator is not umnbiased,
and it is difficult to estimate its variance.

We now have five models which can be compared. As described
in the Theory section, items of importance in this comparison
are

1) How early in the season can we obtain good parameter esti-
mates (convergence)?

2) Is the assumption of equal residual variances satisfied?
3) Are the errors uncorrelated?

These questions will be studied and the results presented in a
later paper. In addition the models will be compared in terms
of their ability to accurately forecast end of season values
for items of interest.

Twenty—two datasets are available for analysis. Variables of
interest from these datasets will be fit to the five models
described in the previous section for various forecasting
dates as well as for an entire growing season. The models
will be compared to find which ones are capable of providing

accurate early season forecasts of final PPM results.

The steps involved in the analysis are as follows:
1) For selected variables in each dataset, the parameters for
each of the five models will be estimated using data for

the entire growing season.

2) For each model the residuals will be tested for autocorre—
lation.

14



3)

4)

5)

If autocorrelation exists, a modification will be made
which will reduce or eliminate the autocorrelation, while

"still allowing the parameters to be used in forecasting.

Parameters will be estimated for this new model. (The
method of modification will be described in the next
paper).

The models will be compared. Steps 1-3 will be performed
agein using data that would have been available at a fore—
casting date. All of the models will compete unless one
proves significantly inferior to the rest. The comparis—
ons to be made include looking at the mean squared errors
of the models and the amount of autocorrelation in the
residuals of the models. Since the purpose of these
models is for forecasting end of season values, no com-
parisons will be made as to how well the models fit the
data early in the season.

Step 4 will be repeated at an earlier forecasting date if
there is some hope that convergence is possible.

A later paper will present the results of the analysis and
recommendations as to whether any further work should be domne
in this area.
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APPENDIX

The purpose of fitting a nonlinear model to the data from a
plant process model 1is to provide forecasts of yield com—
ponents. Thus it is necessary to have some way of producing a
forecast from the parameters estimated in the regression.
This Appendix explains how this can be done and provides @
mathematical justification,

For the Logistic model we have the following form

- 8
w(t) T + e,
1+gp

Under the nsual assumption that the errors have mean zero, we
obtain the following

E(W(t)) =E[ “t+e]= o
1+Bp 1+p

If we let t increase to @, we find that the limiting value of
E(W(t)) is a (provided 0{p<1).

Similarly, the form for the Gompertz model is

t

W(t) = ap? + e,

Taking expected values, we obtain
) t t
E(W(t)) = Elap? + o | = ap”

Once again the limiting value of E(W(t)) as t 9« is a pro-
vided 0¢p(1.

For the time series models the problem is a little more com-
plicated. First, let’'s consider the Logistic Time Series

aW(t-1)
(1-p)W(t-1)+pa ' Ct

W(t) =

If we take expected values of both sides we obtain

_ a¥(t-1) - aW(t-1)
E(W(t)) = E[(l_p)'(t_1)+p° + et] - E[(l—p)'(t-l)“'pa

Unfortunately, there is no simple way to evaluate the right
hand side, since there is a random variable in both the
numerator and the denominator of the expression. However, we
will avoid this problem by making assumptions which seem real-
istic, These assumptions will allow us to look at the 1limit
of the process itself instead of at the limit of its expected
value. The first assumption is that the limit of W(t) exists.
This is a reasonable assumption when W(t) represents the
weight of the grain from a PPM and this reaches some fixed
value at the end of the season. Thus, we have

17



W(t-1
lim W(t) = 1lim ___aW(t-1) + e
tde | tDw (1-p)W(t-1) +pa t]

The second assumption we make is on the errors:

lim °t = 0.
t o

Then (letting lim W(t) = lim W(t-1) = x)

g = —9%
(l'p)x+pa
or
(1-p)x = (1-p)a.
Therefore,

lim W(t) =x =a
t o

(since p # 1).

The same argument works for the Gompertz Time Series Model.
The last model is just a simple transformation of the Gompertz
Time Series Model. Thus the parameter of interest in all
cases is a. (It should be noted that the assumptions made for
the time series models are more realistic than the assumption
of constant variance made for the first two models. However,
in what is to follow it should be clear that the same pro-
cedure will be used for estimation in either case.)

When estimating parameters in a regression problem, it is com—
mon to use the method of 1least squares. Generally this
requires the assumption that the errors have mean zero and
constant variance. Unfortunately, for three of our models we
are actually assuming that the variance becomes zero for large
t. (This was a necessary assumption to have the parameter a
represent the final value of the plant component.) However,
since we are going to be estimating the parameters before
maturity, we will assume that the variances over the range of
our data are approximately constant, (Actually we will be
assuming that over the range of our data, the unequal vari-
ances will not produce a bias in our estimate of a).

Based on the preceding discussion, we will be estimating the
parameters of the regressions wusing the method of least
squares, The parameter which will be used for forecasting is
a in the nonlinear models, and we will assume that our esti-
mates of it are umbiased.
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