
United States
Department of
Agriculture

Statistical
Reporting
Service

Statistical
Research
Division

SRS Staff R8f)Ort
Number AGES 840827
September 1984

Forecasting with Plant
Process Models
An Introduction to a Time
Series Approach
Keith N. Crank



ABS'l1L\Cf

PORECASTING WITB PLANT PROCESS Jl)DELS: AN IN1'RODUCfION TO A
TIME SER.IES APPROACH, by ~eitb N. Cr.ak, St.ti.tic.l Rese.rch
Divi.ion, St.ti.tic.l Reportina Service, U. S. Dep.rtment of
~ariculture. Staff Report No. AGES840827

Thi. p.per pre.ent •• aetbod of u.ina d.t. from. pl.nt pro-
ce•• aodel .nd nonline.r reare ••ion tecbnique. to forec ••t end
of ••••on v.lue. for v.riou. pl.nt component •• Th. u.e of
time ••rie. aethod •• re .1.0 di.cu ••ed. Pive aodel •• re
pre ••nted with. th.or.tic.l ju.tific.tion.

~e"ord.: pl.nt proce •• aodel. tta•• erie •• nonline.r model.
forec••tinl

CONTENTS

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •
• Thi. paper w•• prep.red for ltait.d di.tribution to •
• the r••e.rch community out.ide tbe U. S. Dep.rtment •
• of Aariculture. Th. view •• xpre ••ed berein .re not •
• nece •••rily those of SRS or USDA. •• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

P.Re
SlOOIARY
INI'RODUCfION
'DIEORY
Jl)DEL
ANALYSIS FOR SECOND PAPER
REFERENCES
APPENDIX

i

H
1
3
5

14
16
17



SlJIOIARY This paper presents an approach and develops the statistical
backaround for usinS plant process models (PPK's) as a com-
ponent in yield forecastins models. Although there are other
probleas which must be solved before PPK's can be used in an
operational proBram. the problem of how to use a PPM to fore-
cast il an ~ortant one.

The method IUBgested in this paper ules the early lealon data
from a plant process model to fit the nonlinear 10Bistic
model. the Gompertz model or their time series representa-
tions. One of the parameter estimates from each model will
then provide the forecast of plant component values at the end
of .the growing sealon. These can then be used to obtain a
forecast of yield. Analysis and summary results will be
prelented in a later paper.
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INTRODUcrION The purpose of this paper is to introduce a method of combin-
ing nonlinear regression techniques with data from a plant
process model(PPM) to forecast plant yield components. The
models obtained can be used to forecast yield directly if suf-
ficient data is available at the time of the forecast. How-
ever, this will often not be the case. When yield data is not
available, final values can be forecast for other plant com-
ponents. which can in turn be used for forecasting yield. For
the purposes of this paper. though, it will be assumed that
the fruit weight of the plant is the component being for~cast.
Motivation and development of these models are given in this
paper. Analysis and results of this method will be presented
in a later paper.

The Statistical Reporting Service forecasts crop yields using
regression parameters based on data collected in previous
year~. Currently data from three or five years is used to
estimate the parameters. This means that the forecast for the
current year is extremely dependent on the weather patterns of
those previous years. If more years of data were used to
estimate the parameters, it is possible that the year to year
differences in weather could be incorporated into the regres-
sion parameters. Unfortunately, technological changes in crop
production could invalidate regression estimates which use
many years of data unless these technological changes were
also modeled.

An alternative to
develop a model
One such model is
has the form

using so many years of complex data is to
which only uses data from the current year.

the logistic growth function. This function

WEIGHT(t) ::::--Q-

1+ppt

Previous research has dealt with fitting this model
data using the Marquardt nonlinear regression
([2], [3], [4], [5], [6], [7], [8]. [9], [10], [13])

to field
technique.

Although much research went into this model, it has not been
used in the operating program. TWo major statistical reasons
contributed to this. The first reason is the problem of
unequal residual variances (heteroscedasticity). In the
theory of least squares an assumption is made that the error
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teras of the predicted values have a constant variance. In
linear regression the parameter estimates remain unbiased even
if this assumption is not valid. However, the estimates are
not necessarily minimum variance estimates (that is, there may
be' better estimates in this case [11, pp. 144-146]). In non-
linear regression the effect of unequal residual variances is
not as clear. Since there is no exact solution for the param-
eters of a nonlinear regression, it is not possible to
directly evaluate the effect of unequal variances. Research
was conducted on methods of reducing or eliminating this
unequal variance problem. However, little effort was spent in
deteraining whether or not it was a significant problem.

The second reason for not using the logistic growth model in
the operating program is the problem of convergence. In
linear regression convergence is not a problem, since there is
a closed fora solution for the parameter estimates which
requires merely that two data points be provided. For the
logistic growth model it is not clear how many points are
needed to guarantee that exactly one model can be fit through
that set of points. In some cases three points may be suffi-
cient to identify a unique logistic model. However, in other
cases, three points may deteraine many logistic models or pos-
sibly none.

Most of the papers dealing with the logistic growth model con-
sidered the problem of convergence. However, this considera-
tion was usually limited to determining whether or not conver-
gence occurred in time to make early season forecasts. Only
one paper ([6]) tried to impose conditions which would make
the model converge. This was done by forcing the derivative
to change sign at a prespecified point. The effect was to
eliminate the parameter which was hardest to estimate. This
approach seemed to be an improvement but no further research
was done.

As work on the logistic model decreased, research in the study
of plant process models (PPM's) expanded. Plant process
models are complex models from which computer programs can be
written which "grow" a plant in a computer. These models
require initial values for such items as variety characteris-
tics, planting date, soil characteristics, and soil water, as
well as daily values for precipitation, maximum and minimum
temperature, and solar radiation. Outputs from the programs
are daily values describing the size of the plant's component
parts and its stage of growth. In addition, the final size of
each of the components, as well as the yield, is available at
the end of the season.

The purpose of this paper is to present an approach to using
PPM's for forecasting. The idea behind the paper is that
since data is available daily from a PPM, this data may be
useful in fitting a nonlinear growth model. The next section
examines some possible reasons for the statistical problems
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stated previously. Then the following section describes other
models and.explain how these models may help to eliminate or
reduce those problems. The final section describes the
a~alysis which is to be performed and which will appear in a
later paper.

In applying growth models it is assumed that each plant grows
according to a unique true model with certain estimable param-
eters. However, in sampling to estimate the model parameters
more than one plant was sampled on each time visit and des-
tructive measurements were used. Therefore, the parameters
estimated were for the model of an average of plants, not an
individual plant. What is desired, though, is an average of
the model estimates for each individual plant. In a linear
regression this is not a problem since the average of two
lines is the line through the average of the points. However,
for a nonlinear model this is not the case. For nonlinear
models the average for a given functional form does not have
the same functional form. In previous research the measure-
ments obtained to fit the logistic model were of necessity
destructive measurements. Therefore, each of the data points
used to fit the model came from a different plant. and each of
the points represented one of many models. However. only one
model was estimated.

Both of the statistical problems encountered in previous
research can be attributed in part to the way the model param-
eters were estimated. Since each of the points used in esti-
mation may represent a different set of model parameters. it
is not surprising that an average model fit to all of the
points did not always converge. Furthermore. it is easy to
see from figure 1 that heteroscedasticity is to be expected.
Since all of the model functions start out near zero, there
cannot be much difference in their early values. However, the
later values can vary widely.

If it were possible to obtain data from a single plant without
affecting the growth of the plant and use that data to fit the
model. convergence might be obtained at an earlier date. How-
ever. it is not clear whether even this convergence would be
early enough to provide early season forecasts. That problem
will be discussed in a later paper after the analysis has been
completed.

It also seems clear that the problem of unequal residual vari-
ances could be reduced by using data from a single plant.
However. there may be an inherent problem with unequal resi-
dual variances in the model. It seems logical for the plant
to be able to deviate more from its expected value when it is
large than when it is small. Since the growth function is
nonnegative and increasing, these larger deviations would
occur later in plant development. Thus there may be a problem
with unequal residual variances even when a single plant is
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FIGURE 1: EXAMPLES OF THE LOGISTIC GROWTH FUNCTION



MODEL

used. This problem should not be as large as in previous
research. since between plant variability has been eliminated.

Fittins a growth model usinS data from a single plant could
provide many benefits. But it has its drawbaoks as well. The
bigsest problem is with autooorrelation of the residuals.
This means that deviations of the true value from the model
value will be related for time periods whioh are olose
tosether. For example. if a plant's size is below what is
expected on a siven day. the size on the followins day will
likely be below its expeoted value also. In order to reaoh
its expected value on the second day. the plant must not only
makeup the previous day's deficit. but must also account for
its expected growth for that day. Thus the errors will not be
uncorrelated. If the errors are not uncorrelated. then the
parameter estimates may not be consistent (that is. no matter
how muoh data is available the estimates may not converge to
their true value [12]).

It would be nice if instead of coaparins the plant's size to
some fixed value. it could be compared in some way to its pre-
vious day's value. If the plant's expected growth for a given
day were dependent on its size at the besinnins of the day,
then a model based on the size of the plant on the previous
day would have uncorrelated errors. Such a model would be a
time series model. In a time series model each value of plant
size can depend on the previous day's value. However. such a.
model would not necessarily be linear. Thus the techniques
developed in most time series courses may not be directly
applicable •

The discussion of usinS data from a single plant assumed that
such data could be obtained without influencing the future
growth of the plant. In seneral such data is not available.
In order to obtain measurements on a growing plant it is usu-
ally necessary to destroy the plant or at least parts of .the
plant. However. by assumins that the plant process models can
reproduce the srowth of a representative plant. data can be
obtained for what can be considered to be a single plant. In
addition this data can be obtained without affectins the
future srowth of the plant.

Since plant process models (PPM's) produce daily size values
for all plant components. these PPM's can be used in conjunc-
tion with within year srowth models to forecast the values of
those components at the end of the season. This can be done
by fitting a nonlinear regression model to the daily plant
data. The model with which the agency has the most experience
is the logistic growth model. The form of this model is
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where 'I is soae .easure of the weilht of the fruit at time t.
t is tme (usually .easured as n1lllber of days froe soae
observable pheno10lica1 event). and a. P. and pare paraaeters
to be estiaated. (See Filure 2.)

Another model which is similar is the Goapertz .ode1. This has
the fora

where all of the variables are the saae as in the lOlistic
model (thoulh the paraaeters .ay have different interpreta-
tions). (See Filure 3.)

Both of these .odels can be rewritten as a time series. that
is. 'I(t) (weilht at ti.e t) is written as a function of 'I(t-1)
(the previous day's weilht) instead of as a function of t.
This is done by first solvinl the equation for t. For the
lOlistic .ode1 we have the fo11o.inl steps:

Ku1tip1yinl on both sides by 1+Ppt we let

Ezpandinl the left hand side

subtractinl 'I(t)

t(Pp )'I(t) = a-W(t).

dividinl by P'I(t)

t = a-'I(t)
P P'I(t)•

and then taking logs we let

( » _ [a-W(t)]
t In (p - In 11'1( t ) •
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FIGURE 2: LOGISTIC FUNCTION
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FIGURE 3: GOMPERTZ FUNCTION



We then divide by In(p) to let

t ""
1 [«-W(t)]

1n(p) 1n PW(t) •

Then we substitute (t-1) for t

__ 1 [«-W(t-1}]
(t 1) - In(p)ln PW(t-1) •

This is then substituted back into our orilinal equation:

W(t)

""

""

CI

[1 [CI-W(t-1)]]
l+A 1n(p) 1n PW(t-1)

pp •

CI

[1n( 0) 1n[CI-W(t-1}]]
1+fJpe 1n(p) PW(t-1)

""

CI
"" 1+A [CI-W(t-1)]

p PW( t-1)

CI
"" 1+[O(CI.-W(t-1} )]

W(t-l)
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= a"Ct-l)
"(t-l)+pa-p"(t-l)

= a"( t-l)
(l-p)"(t-l)+pa

(See Filure 4.)

The saae procedure is used to derive a time series for the
Goapertz aodel:

t
"(t) 0: apP

tpP = llil.
a

Then

1 [1 r!(t-l)]](t-l) = In(p)ln In(p)lnL a •

and
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W(t-l)

FIGURE 4: LOGISTIC TIME SERIES



(See Figure 5.)

Since the theory of linear regression is much better developed
than the theory Qf nonlinear regression. it is often useful to
make a transformation which will result in a linear model.
Many times this is not possible and in such cases the model is
called intrinsically nonlinear. When such a transformation is
possible. the equations are called intrinsically linear.([l])
Of the four models mentioned. the first three are all intrin-
sically nonlinear. However. the last one (the Go.pertz time
series) is intrinsically linear. Taking logrithms of both
aides we obtain

In(W(t)) = In(c)+p(ln(W(t-1))-ln(c))

12
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ANALYSIS FOR
SECOND PAPER

Letting L(t)=ln(W(t». d=ln(a)-pln(a). and c=p. we get the
linear equation

L(t) = d+cL(t-l).

Of the parameters to be estimated. the parameter a is of spe-
cial importance (See the Appendix). This parameter is the
upper asymptote of the curve and the estimate of fruit weight
at the end of the growing season. Hence. if the model can be
fit to the data before the season is over. the estimated value
of a can be used as a forecast of the final value of fruit
weight. This is true for both the logistic model and the Gom-
pertz model. In the nonlinear regressions. the parameter a is
estimated directly. However. in the linear regression d=(I-
p)ln(a) is the 3stimated parameter. We can obtain an estimate
of a as a=exp(-l--)' but if c is close to one. this may not be-ca good estimator. In addition this estimator is not unbiased.
and it is difficult to estimate its variance.

We now have five models which can be compared. As described
in the Theory section. items of importance in this comparison
are

1) How early in the season can we obtain good parameter esti-
mates (convergence)?

2) Is the assumption of equal residual variances satisfied?

3) Are the errors uncorrelated?

These questions will be studied and the results presented in a
later paper. In addition the models will be compared in terms
of their ability to accurately forecast end of season values
for items of interest.

Twenty-two datasets are available for analysis. Variables of
interest from these datasets will be fit to the five models
described in the previous section for various forecasting
dates as well as for an entire growing season. The models
will be compared to find which ones are capable of providing
accurate early season forecasts of final PPM results.

The steps involved in the analysis are as follows:

1) For selected variables in each dataset. the parameters for
each of the five models will be estimated using data for
the entire growing season.

2) For each model the residuals will be tested for autocorre-
1ation •
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3) If autocorrelation exists. a modification will be made
which will reduce or eliminate the autocorrelation. while
'still allowing the parameters to be used in forecasting.
Parameters will be estimated for this new model. (The
me'thodof modification will be described in the next
paper).

4) The models will be compared. Steps 1-3 will be performed
again using data that would have been available at a fore-
casting date. All of the models will compete unless one
proves significantly inferior to the rest. The comparis-
ons to be aade include looking at the mean squared errors
of the models and the amount of autocorrelation in the
residuals of the models. Since the purpose of these
models is for forecasting end of season values. no co~
parisons will be made as to how well the models fit the
data early in the season.

5) Step 4 will be repeated at an earlier forecasting date if
there is some hope that convergence is possible.

A later paper will present the results of the analysis and
recommendations as to whether any further work should be done
in this area.
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APPENDIX The purpose of fitting a nonlinear model to the data from a
plant process model is to provide forecasts of yield com-
ponents. Thus it is necessary to have some way of producing a
forecast from the parameters estimated in the rearession.
This Appendix explains how this can be done and provides a
matheaatical justification.

For the Loaistic model we have the following form

Wet) = a t + e
l+Pp t

Under the usual assumption that the errors have mean zero, we
obtain the following

E(W(t» = E[_a_ + etl = a
l+Ppt l+ppt

If we let t increase to ~, we find that the limiting value of
E(W(t» is a (provided O<p<l).

Similarly, the form for the Gompertz model is
t

Wet) = aPP

Taking expected values, we obtain

E(W(~» = E[apPt + etl = appt

Once again the limiting value of E(W(t» as t 7 ~ is a pro-
vided O<p<1.

For the time series models the problem is a little more com-
plicated. First, let's consider the Logistic Time Series

W(t) = aW(t-l) + et(l-p)W(t-l)+pa

If we take expected values of both sides we obtain

E(W(t» = E[ alHt-1) + e ] - E[ aW(t-l} ](1-p)Y(t-1)+pa t - (l-p)W(t-l)+pa

Unfortunately, there is no simple way to evaluate the right
hand side, since there is a random variable in both the
numerator and the denominator of the expression. However, we
will avoid this problem by making assumptions which seem real-
istic. These assumptions will allow us to look at the limit
of the process itself instead of at the liait of its expected
value. The first assumption ia that the liait of Wet) exists.
This is a reasonable assumption when yet) represents the
weight of the grain from a PPM and this reaches some fixed
value at the end of the season. Thus, we have
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lim
t ~ CD

W(t) = lim
t ~ CD

[ aW(t-l) + e ]
(l-p)W(t-l)+pa t

The second assumption we aake is on the errors:

Then (letting lia W(t) = lim W(t-l) = x)

or

x = ax
(l-p)x+pa

(l-p)x = (l-p)a.

Therefore,

lim W(t) = x = a
t ~ CD

(since p f:. 1).

The same argument works for the Gompertz Time Series Model.
The last model is just a simple transformation of the Gompertz
Tiae Series Model. Thus the parameter of interest in all
cases is a. (It should be noted that the assumptions made for
the time series models are more realistic than the assumption
of constant variance .ade for the first two models. However,
in what is to follow it should be clear that the same pro-
cedure will be used for estimation in either case.)

When estimating parameters in a regression problem, it is com-
mon to use the method of least squares. Generally this
requires the assumption that the errors have .ean zero and
constant variance. Unfortunately, for three of our models we
are actually assuming that the variance becomes zero for large
t. (This was a necessary ass••ption to have the parameter a
represent the final value of the plant component.) However,
since we are going to be estimating the parameters before
maturity, we will assuae that the variances over the range of
our data are approximately constant. (Actually we will be
assuaing that over the ranle of our data, the unequal vari-
ances will not produce a bias in our estimate of a).

Based on the preceding discussion, we will be estimating the
parameters of the relressions using the method of least
squares. The parameter which will be used for forecasting is
a in the nonlinear models, and we will ass••e that our esti-
mates of it are unbiased.
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